236719 Computational Geometry – Tutorial 7

Voronoi Diagram

Delaunay triangulation Voronoi diagram Delaunay and Voronoi

Amani Shhadi

Based on slides by Yufei Zheng - 郑羽 纛

How round is an object?

How round is an object?

- Formal problem:
- Given samples from the surface of a quasicircular object, we would like to quantify how round it is.

- We can come up with many measures
- We will consider the following measure: What is the width of the minimal ring that contain all the samples?

We assume that the two circles has the same center **Observations:**

◎ It suffice to find the center of the ring

Observations:

O The rings are determined by 4 points

Observations:

O The rings are determined by 4 points

Ordinary Voronoi Diagram

Ordinary Voronoi Diagram - Recall

Definition – a subdivision of plane into cells

• Sites: $S = \{s_1, s_2, \cdots, s_n\}$

Euclidean distance in the plane

dist
$$(p,q) = \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2}$$

 $\circ p$ lies in the cell of site s_i iff

 $dist(p, s_i) < dist(p, s_j), \forall s_j \in S, j \neq i.$

○ Cells -
$$V(s_i) = \bigcap_{1 \le j \le n, j \ne i} h(s_i, s_j)$$

○ Edges - straight line segments

Search cell is associated with the **farthest** point from the cell

Search cell is associated with the **farthest** point from the cell

Observations:

OThe diagram is the intersection of the "Other side" of the bisector half-planes.

○A point p has a cell iff p is a vertex of the <u>convex hull</u> of the point.

◎ If the farthest point from q is p_i , then, the ray from q in the opposite direction to p_i is also in the cell (⇒ The cells are unbounded.

The separator between the cells of p_i and p_j is the bisector of p_i and p_j

 \odot Consider a random order of the CH vertices, p_1, \ldots, p_h

 \odot Given a diagram for p_1 , ..., p_{i-1} we would like to add p_i

 \bigcirc We will denote the neighbors of p_i (when p_i is added) as $cw(p_i)$ and $ccw(p_i)$

How do we find cw(p_i) and ccw(p_i)?
Remove the points in the opposite order, the neighbors when p_i is removed are cw(p_i) and ccw(p_i)

Complexity:

- \bigcirc CH $O(n \log n)$
- \odot Insertion of p_i : worst case O(i)

Expected: O(1)

OProof:

- \odot The complexity of the ith insertion is as the complexity of the cell of p_i
- \bigcirc There are at most 2i 3 edges after the *i*th insertion
- \Rightarrow The average cell complexity is O(1)
- ○Each point from p_1, \ldots, p_i have the same probability to be the last one added ⇒ the expected complexity of insertion is O(1)

 \bigcirc Corollary: the expected complexity is $O(n \log n)$

- \bigcirc and the worst-case complexity is ${m O}(n^2)$.

Case 1: the center is a vertex of the farthest point Voronoi diagram

- 1. Compute the farthest point Voronoi diagram
- 2. For each vertex of the farthest-point Voronoi diagram:
 - 2.1. Determine the point of P that is closest

O(n) – compute the smallest width ring. (Case 1)

O Case 2: the center is a vertex of the closest point Voronoi diagram

- 1. Compute the normal Voronoi diagram
- 2. For each vertex of the normal Voronoi diagram:
 - 2.1. Determine the point of P that is farthest

O(n) – compute the smallest width ring. (Case 2)

Case 2: 1 outer 3 inner

O Case 3: the center is an intersection of two edges from both diagrams

- 1. Compute the normal Voronoi diagram and farthest point Voronoi diagram
- 2. For every pair of edges (one from each diagram)
 - 2.1. check if they intersect

 $O(n^2)$ – compute the smallest width ring. (Case 3)

Case 3: 2 outer 2 inner

- Case 1: the center is a vertex of the farthest point Voronoi diagram
- ◎Case 2: the center is a vertex of the closest point Voronoi diagram
- ◎Case 3: the center is an intersection of two edges from both diagrams.

Multiplicatively Weighted Voronoi Diagram

Difference – Euclidean distance between points is divided by positive weights

• **Distance** - dist
$$(p, s_i) = \frac{\|p - s_i\|}{w_i}$$

- O Edges circular arcs or straight-line segments
- For every point x on the edge separating $V(s_i)$ and $V(s_j)$,

Additively Weighted Voronoi Diagram

Difference – positive weights are subtracted from the Euclidean distance

• **Distance** - dist $(p, s_i) = ||p - s_i|| - w_i$.

•

•

•

 (\cdot)

Edges – hyperbolic arcs or straight-line segments
 For every point x on the edge separating V(s_i) and V(s_j), dist(x, s_i) = dist(x, s_j) + (w_i - w_j).

Voronoi Diagram in Different Metric Difference – Distance defined in L₁

- **Distance** dist $(p, s_i) = |p_x s_{i,x}| + |p_y s_{i,y}|$.
- Edges vertical, horizontal or diagonal at ±45 degree

Centroidal Voronoi Diagram (CVD)

Olifference – Each site is the mass centroid of each cell

○ Given a region $V \in \mathbb{R}^N$, and a density function ρ ,

mass centroid z^* of V is defined by $z^* = \frac{\int_V y \rho(y) \, dy}{\int_V \rho(y) \, dy}$

• **Centroid of polygon** (CCW order of the vertices (x_i, y_i))

$$Area = A = \frac{1}{2} \sum_{i=0}^{N-1} (x_i y_{i+1} - x_{i+1} y_i)$$
$$x_c = \frac{1}{6A} \sum_{i=0}^{N-1} (x_i + x_{i+1}) (x_i y_{i+1} - x_{i+1} y_i)$$
$$y_c = \frac{1}{6A} \sum_{i=0}^{N-1} (y_i + y_{i+1}) (x_i y_{i+1} - x_{i+1} y_i)$$

CVD Computation – Lloyd's Algorithm

- 1. Compute the Voronoi Diagram of the given set of sites $\{s_i\}_{i=1}^n$;
- 2. Compute the mass centroids of Voronoi cells $\{V_i\}_{i=1}^n$ found in step 1, these centroids are the new set of sites;
- If this new set of sites meets the convergence criterion, terminate;
 Else, return to step 1.

Note

- Convergence criterion depends on specific application
- Converges to a CVD slowly, so the algorithm stops at a tolerance value
 - Simple to apply and implement

First iteration

Third iteration

Fifteenth iteration

Voronoi Diagram in Higher Dimensions

 Cells – convex polytopes
 Bisectors - (d – 1)-dimensional hyperplanes

• Complexity -
$$O(n^{\left|\frac{a}{2}\right|})$$

