236719 Computational Geometry – Tutorial 7

Voronoi Diagram

Delaunay triangulation

Voronoi diagram

Delaunay and Voronoi

Amani Shhadi

Based on slides by Yufei Zheng -郑羽霏

How round is an object?

How round is an object?

- ◎ Formal problem:
- ◎ Given samples from the surface of a quasicircular object, we would like to quantify how round it is.

- ◎ We can come up with many measures
- We will consider the following measure: What is the width of the minimal ring that contain all the samples?

We assume that the two circles has the same center **Observations:**

◎ It suffice to find the center of the ring

Observations:

◎ The rings are determined by 4 points

Observations:

◎ The rings are determined by 4 points

Ordinary Voronoi Diagram

Ordinary Voronoi Diagram - Recall

◎ **Definition** – a subdivision of plane into cells

• Sites: $S = \{s_1, s_2, \dots, s_n\}$

○ Euclidean distance in the plane

$$
dist(p,q) = \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2}.
$$

 \circ p lies in the cell of site s_i iff

 $dist(p, s_i) < dist(p, s_j), \forall s_j \in S, j \neq i.$

\n- Cells -
$$
V(s_i) = \bigcap_{1 \le j \le n, j \ne i} h(s_i, s_j)
$$
\n- Edges - straight line segments
\n

◎ Each cell is associated with the **farthest** point from the cell

◎ Each cell is associated with the **farthest** point from the cell

Observations:

◎The diagram is the intersection of the "Other side" of the bisector half-planes.

 \circ A point p has a cell iff p is a vertex of the convex hull of the point.

 \bigcirc If the farthest point from q is p_i , then, the ray from q in the opposite direction to p_i is also in the cell α ⇒ The cells are unbounded.

◎The separator between the cells of p_i and p_j is the bisector of p_i and p_j

 \odot Consider a random order of the CH vertices, $p_1, ..., p_h$

©Given a diagram for $p_1, ..., p_{i-1}$ we would like to add p_i

©We will denote the neighbors of p_i (when p_i is added) as $cw(p_i)$ and $ccw(p_i)$

 \odot How do we find $cw(p_i)$ and $ccw(p_i)$? \circ Remove the points in the opposite order, the neighbors when p_i is removed are $cw(p_i)$ and $ccw(p_i)$

Complexity:

- \odot CH $O(n \log n)$
- \circ Insertion of p_i : worst case O(i)

Expected: O(1)

◎Proof:

- ◎The complexity of the th insertion is as the complexity of the cell of p_i
- ©There are at most $2i 3$ edges after the *i*th insertion
- \Rightarrow The average cell complexity is $O(1)$
- © Each point from $p_1, ..., p_i$ have the same probability to be the last one added \Rightarrow the expected complexity of insertion is $O(1)$

 \odot Corollary: the expected complexity is $O(n \log n)$

and the worst-case complexity is $O(n^2)$.

◎ Case 1: the center is a vertex of the farthest point Voronoi diagram

- 1. Compute the farthest point Voronoi diagram
- 2. For each vertex of the farthest-point Voronoi diagram:
	- 2.1. Determine the point of P that is closest

 $O(n)$ – compute the smallest width ring. (Case 1)

◎ Case 2: the center is a vertex of the closest point Voronoi diagram

- 1. Compute the normal Voronoi diagram
- 2. For each vertex of the normal Voronoi diagram:
	- 2.1. Determine the point of P that is farthest

 $O(n)$ – compute the smallest width ring. (Case 2)

Case 2: 1 outer 3 inner

◎ Case 3: the center is an intersection of two edges from both diagrams

- 1. Compute the normal Voronoi diagram and farthest point Voronoi diagram
- 2. For every pair of edges (one from each diagram)
	- 2.1. check if they intersect

 $O(n^2)$ – compute the smallest width ring. (Case 3)

Case 3: 2 outer 2 inner

- ◎ Case 1: the center is a vertex of the farthest point Voronoi diagram
- ◎Case 2: the center is a vertex of the closest point Voronoi diagram
- ◎Case 3: the center is an intersection of two edges from both diagrams.

Multiplicatively Weighted Voronoi Diagram

◎ **Difference** – Euclidean distance between points is divided by positive weights

$$
\circ \textbf{Distance} - \text{dist}(p, s_i) = \frac{\|p - s_i\|}{w_i}.
$$

- ◎ Edges circular arcs or straight-line segments
- For every point x on the edge separating $V(s_i)$ and $V(s_i)$,

Additively Weighted Voronoi Diagram

◎ **Difference** – positive weights are subtracted from the Euclidean distance

 \circ **Distance** - dist $(p, s_i) = ||p - s_i|| - w_i$.

 $\ddot{\bullet}$

 \bigodot

 \bullet

 $\left(\begin{matrix}\cdot\\1\end{matrix}\right)$

◎ Edges – hyperbolic arcs or straight-line segments \circ For every point x on the edge separating $V(s_i)$ and $V(s_i)$, $dist(x, s_i) = dist(x, s_i) + (w_i - w_i).$

Voronoi Diagram in Different Metric \odot **Difference** – Distance defined in L_1

- **Distance** dist(p, s_i) = $|p_x s_{i,x}| + |p_y s_{i,y}|$.
- \odot Edges vertical, horizontal or diagonal at \pm 45 degrees

Centroidal Voronoi Diagram (CVD)

◎ **Difference** – Each site is the mass centroid of each cell

 \circ Given a region $V \in \mathbb{R}^N$, and a density function ρ ,

mass centroid z^* of V is defined by $z^* =$ $\int_V y \rho(y) dy$ $\int_V \rho(y) dy$

 \circ **Centroid of polygon** (CCW order of the vertices (x_i, y_i))

$$
Area = A = \frac{1}{2} \sum_{i=0}^{N-1} (x_i y_{i+1} - x_{i+1} y_i)
$$

$$
x_c = \frac{1}{6A} \sum_{i=0}^{N-1} (x_i + x_{i+1}) (x_i y_{i+1} - x_{i+1} y_i)
$$

$$
y_c = \frac{1}{6A} \sum_{i=0}^{N-1} (y_i + y_{i+1}) (x_i y_{i+1} - x_{i+1} y_i)
$$

CVD Computation – Lloyd's Algorithm

- Compute the Voronoi Diagram of the given set of sites $s_i\}_{i=1}^n$;
- 2. Compute the mass centroids of Voronoi cells ${V_i}_{i=1}^n$ found in step 1, these centroids are the new set of sites;
- 3. If this new set of sites meets the **convergence criterion**, terminate;

Else, return to step 1.

Note

- Convergence criterion depends on specific application
- Converges to a CVD slowly, so the algorithm stops at a tolerance value
	- Simple to apply and implement

First iteration

۰

Third iteration

Fifteenth iteration

Voronoi Diagram in Higher Dimensions

◎ **Cells** – convex polytopes \odot **Bisectors** - $(d - 1)$ -dimensional hyperplanes

© **Complexity** - $O(n)$ \overline{d} \overline{z})

